00:00:00 / 00:00:00

A Monge - Ampère Operator in Symplectic Geometry

De Blaine Lawson

Apparaît dans la collection : Riemannian Geometry Past, Present and Future: an homage to Marcel Berger

The point of this talk is to introduce a polynomial differential operator which is an analogue of the classical real and complex Monge-Ampère equations. This operator makes sense on any symplectic manifold with a Gromov metric, and its solutions are exactly the functions obtained as upper envelopes of Lagrangian plurisubharmonic functions. Both the homogeneous and inhomogeneous Dirichlet problems for this operator are solved on Lagrangian convex domains, and the homogeneous result also holds for all other branches of the equation. In C^n fundamental solution is established, where the inhomogeneous term is a delta function. There are many interesting open questions. (Talk presented by P. PANSU)

Informations sur la vidéo

  • Date de captation 09/12/2017
  • Date de publication 27/12/2017
  • Institut IHES
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis