

Ergodic theory of the geodesic flow of hyperbolic surfaces - Lecture 1
De Barbara Schapira


Ergodic theory of the geodesic flow of hyperbolic surfaces - Lecture 2
De Barbara Schapira
De Rémi Jaoui
Apparaît dans la collection : Jean-Morlet Chair 2020 - Research School: Geometry and Dynamics of Foliations / Chaire Jean-Morlet 2020 - Ecole : Géométrie et dynamiques des feuilletages
To any algebraic differential equation, one can associate a first-order structure which encodes some of the properties of algebraic integrability and of algebraic independence of its solutions.To describe the structure associated to a given algebraic (nonlinear) differential equation (E), typical questions are:- Is it possible to express the general solutions of (E) from successive resolutions of linear differential equations?- Is it possible to express the general solutions of (E) from successive resolutions of algebraic differential equations of lower order than (E)?- Given distinct initial conditions for (E), under which conditions are the solutions associated to these initial conditions algebraically independent?In my talk, I will discuss in this setting one of the first examples of non-completely integrable Hamiltonian systems: the geodesic motion on an algebraically presented compact Riemannian surface with negative curvature. I will explain a qualitative model-theoretic description of the associated structure based on the global hyperbolic dynamical properties identified by Anosov in the 70’s for the geodesic motion in negative curvature.