![[1240] La logique continue des corps globalement valués](/media/cache/video_light/uploads/video/Bourbaki.png)

[1240] La logique continue des corps globalement valués
De Antoine Chambert-Loir


Definable holomorphic continuations in o-minimal structures
De Adele Padgett
De Léo Jimenez
Apparaît dans la collection : Galois differential Theories and transcendence Thematic Month Week 4 / Théories de Galois différentielles et transcendance Mois thématique semaine 4
Given two algebraic ODEs, is there a differential-algebraic relation between generic tuples of their solutions? In recent work with Freitag and Moosa, we produce a bound on the length of tuples one must look at to f ind a relation. Our proof relies on two ingredients. The first is differential Galois theory, combined with the recent proof by Freitag and Moosa of the Borovik-Cherlin conjecture in algebraically closed fields. The second is some general model theory result which allows us to factor any relation through some minimal ODE. I will give a precise statement of our result and sketch the proof. I will also explain why our bound is tight.