The Fields Medallists

Collection The Fields Medallists

00:00:00 / 00:00:00
17 22

The Witt vector affine Grassmannian

De Peter Scholze

Apparaît également dans les collections : Arithmetic geometry, representation theory and applications / Géométrie arithmétique, théorie des représentations et applications, Fields medallists - 2018

(joint with Bhargav Bhatt) We prove that the space of $W(k)$-lattices in $W(k)[1/p]^n$, for a perfect field $k$ of characteristic $p$, has a natural structure as an ind-(perfect scheme). This improves on recent results of Zhu by constructing a natural ample line bundle on the space of such lattices.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.18774403
  • Citer cette vidéo SCHOLZE, Peter (26/06/2015). The Witt vector affine Grassmannian. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.18774403
  • URL https://dx.doi.org/10.24350/CIRM.V.18774403

Bibliographie

  • [1] Beauville, A., & Laszlo, Y. (1994). Conformal blocks and generalized theta functions. Communications in Mathematical Physics, 164(2), 385-419 - http://dx.doi.org/10.1007/BF02101707
  • [2] Bhatt, B., & Scholze, P. Projectivity of the Witt vector affine Grassmannian, preprint
  • [3] Bhatt, B., Schwede, K., & Takagi, S. (2014). The weak ordinarity conjecture and F-singularities. <arXiv:1307.3763> - http://arxiv.org/abs/1307.3763
  • [4] Kreidl, M. (2014). On $p$-adic lattices and Grassmannians. Mathematische Zeitschrift, 276(3-4), 859-888 - http://dx.doi.org/10.1007/s00209-013-1225-y
  • [5] Zhu, X. (2014). Affine Grassmannians and the geometric Satake in mixed characteristic. <arXiv:1407.8519> - http://arxiv.org/abs/1407.8519

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis