Partial Differential Equations, Analysis and Geometry

Collection Partial Differential Equations, Analysis and Geometry

Organisateur(s) Elena Giorgi, Markus Keel, Jérémie Szeftel
Date(s) 12/01/2026 - 16/01/2026
URL associée https://indico.math.cnrs.fr/event/15217/
00:00:00 / 00:00:00
7 8

Anomalous Diffusivity and Regularity for Random Incompressible Flows

De Scott Armstrong

I will present work on the long-time behavior of Brownian motion in a stationary, incompressible random drift field with slowly decaying correlations. In this setting one expects the variance of the displacement to grow faster than linearly in time, with an exponent determined by the correlation structure of the drift (as predicted by Bouchaud-Georges in 1990). We view the problem through the associated divergence-form drift-diffusion operator and apply a scale-by-scale coarse-graining scheme to its coefficients. This produces, at each scale, an effective Laplacian whose diffusivity depends on the scale, together with quantitative control of the error of this approximation. This can be seen as a rigorous version of the perturbative renormalization group heuristics proposed by Bouchaud-Georges. A crucial role is played by anomalous regularization, that is, elliptic estimates that are independent of the bare molecular diffusivity. This work I describe is joint with A. Bou-Rabee and T. Kuusi.

Informations sur la vidéo

  • Date de captation 13/01/2026
  • Date de publication 14/01/2026
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis