La vidéo est momentanément indisponible, elle le sera très prochainement...

Our talk will consider two historical case studies of the complex and contested disciplinary definition of algebra. Both the historical actors and the historians and mathematicians who look back on the history of algebra in order to define this discipline have had to make choices that are often based on tacit assumptions (e.g. assumptions that determine contextually situated answers to questions such as: what is algebra for? when is it used? does it have its own language? does it have its own objects?). Indeed, historians and mathematicians often “thematise” their narratives of mathematics' past around disciplines, and such thematisation can have distorting anachronistic effects, projecting our disciplinary definitions onto past texts. The first case study is Isaac Newton's approach to algebra. A study of the context in which Newton was engaged allows us to gain a better understanding of the tasks and values he set himself when practising algebra. These tasks and values differ in some respects from those that shape the historical narratives of 17th-century mathematics. A second case study focuses on the Abel–Ruffini theorem, which established the impossibility of solving general polynomial equations of degree five or higher. We argue that this theorem not only marked a mathematical breakthrough but also contributed to a fundamental reconfiguration of algebra's objects and boundaries as a discipline, while exploring the role that the concept of commutativity may have played in this transformation. Taken together, these case studies reveal strikingly different conceptions of algebra across time. In short, our talk is an exercise in contextualising algebra as a discipline, where the contexts are both those of the historical actors and those of present-day historians and mathematicians interpreting (and editing) past texts. Such an interplay between the categories of historical actors and those of present-day historians and mathematicians invites a dialogue between the historian and mathematician, a dialogue that helps to expose the problematic and contingent assumptions that underlie the definition(s) of algebra.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20411103
  • Citer cette vidéo Martinez Adame, Carmen; Guicciardini, Niccolò (24/11/2025). What is algebra ? . CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20411103
  • URL https://dx.doi.org/10.24350/CIRM.V.20411103

Bibliographie

  • BOS, Henk JM. Philosophical challenges from history of mathematics. In : New trends in the history and philosophy of mathematics. University Press of Southern Denmark, 2004. p. 51-66.
  • GUICCIARDINI, Niccolò (ed.). Anachronisms in the History of mathematics: Essays on the Historical Interpretation of Mathematical Texts. Cambridge University Press, 2021.
  • ABEL, Niels Henrik. Mémoire sur les équations algébriques, où on demontre l'impossibilité de la résolution de l'équation générale du cinquième dégré. 1824.
  • Abel, N.H.. "Beweis der Unmöglichkeit, algebraische Gleichungen von höheren Graden als dem vierten allgemein aufzulösen." Journal für die reine und angewandte Mathematik, vol. 1826, no. 1, - https://doi.org/10.1515/crll.1826.1.65

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis