Frieze patterns in algebra, combinatorics and geometry / Frises en algèbre, combinatoire et géométrie

Collection Frieze patterns in algebra, combinatorics and geometry / Frises en algèbre, combinatoire et géométrie

Organisateur(s) Baur, Karin ; Cuntz, Michael ; Faber, Eleonore ; Plamondon, Pierre-Guy
Date(s) 12/05/2025 - 16/05/2025
URL associée https://conferences.cirm-math.fr/3214.html
00:00:00 / 00:00:00
2 3

The goal of this talk is to explore the connections between various frieze patterns and representation theory of associative algebras. We begin with the classical Conway- Coxeter friezes over positive integers and their correspondence with Jacobian algebras of type A, where entries in the frieze count the number of submodules of indecompos- able representations. This can also be reinterpreted in terms of applying the Caldero- Chapoton map, providing a close connection to Fomin-Zelevinsky's cluster algebras. Extending these ideas beyond the classical case, we will also discuss higher dimen- sional friezes, called (tame) SLk friezes, as well as their relation to cluster algebras on coordinate rings of Grassmannians Gr(k,n) and their categorification. Furthermore, SLk friezes are a special type of SLk tilings, integer tilings of the plane satisfying the condition that every k x k square has determinant 1. We will present a characterization of SLk tilings in terms of pairs of bi-infinite sequences in Zk and discuss applications to duality and positivity.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20346503
  • Citer cette vidéo Serhiyenko, Khrystyna (12/05/2025). Frieze patterns and representation theory . CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20346503
  • URL https://dx.doi.org/10.24350/CIRM.V.20346503

Bibliographie

  • ZACHERY Peterson et SERHIYENKO Khrystyna, SLk -tilings and paths in Zk , preprint arXiv: 2504.01693, 2025, 30 pp. - https://doi.org/10.48550/arXiv.2504.01693
  • BAUR, Karin, FABER, Eleonore, GRATZ, Sira, et al. Friezes satisfying higher SLk-determinants. Algebra & Number Theory, 2021, vol. 15, no 1, p. 29-68. - https://doi.org/10.2140/ant.2021.15.29
  • CALDERO, Philippe et CHAPOTON, Frédéric. Cluster algebras as Hall algebras of quiver representations. Commentarii Mathematici Helvetici, 2006, vol. 81, no 3, p. 595-616. - https://doi.org./10.4171/cmh/65

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis