[1099] Espaces de Banach possédant très peu d'opérateurs
Les seuls opérateurs bornés que l'on puisse construire sur un espace de Banach séparable de dimension infinie $X$ si on ne dispose d'aucune information supplémentaire sur $X$ sont de la forme $λI+K$, où $λ$ est un scalaire et $K$ un opérateur compact obtenu comme limite en norme d'opérateurs de rang fini. Nous présenterons une construction remarquable, due à S. Argyros et R. Haydon, d'espaces sur lesquels tous les opérateurs sont effectivement somme d'un opérateur scalaire et d'un opérateur compact.
[D'après S. Argyros et R. Haydon]