2025 - T2 - WS1 - Higher rank geometric structures, Higgs bundles and physics

Collection 2025 - T2 - WS1 - Higher rank geometric structures, Higgs bundles and physics

Organisateur(s) Canary, Richard ; Garcia-Faide, Elba ; Labourie, François ; Li, Qiongling ; Neitzke, Andrew ; Pozzetti, Beatrice ; Wienhard, Anna
Date(s) 19/05/2025 - 27/05/2025
URL associée https://indico.math.cnrs.fr/event/11569/
10 20

Stable maps and a universal Hitchin component

De Peter Smillie

Let $X$ be a pinched Cartan-Hadamard manifold, and $Y$ a symmetric space of non-compact type. We define a notion of stability for coarse Lipschitz maps $f: X \to Y$, and show that every stable map from $X$ to $Y$ is at bounded distance from a unique harmonic map. As an application, we extend any positive quasi-symmetric map from $\mathbb{RP}^1$ to the flag variety of $\textrm{SL}_n(\mathbb{R})$ to a harmonic map from $\mathbb H^2$ to the symmetric space of $\textrm{SL}_n(\mathbb{R})$. This allows us to define a universal Hitchin component in the style suggested by Labourie and Fock-Goncharov. This is all joint work with Max Riestenberg.

Informations sur la vidéo

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis