2025 - T2 - WS1 - Higher rank geometric structures, Higgs bundles and physics

Collection 2025 - T2 - WS1 - Higher rank geometric structures, Higgs bundles and physics

Organisateur(s) Canary, Richard ; Garcia-Faide, Elba ; Labourie, François ; Li, Qiongling ; Neitzke, Andrew ; Pozzetti, Beatrice ; Wienhard, Anna
Date(s) 19/05/2025 - 27/05/2025
URL associée https://indico.math.cnrs.fr/event/11569/
1 20

Ghost polygons, Poisson bracket and convexity

De Martin Bridgeman

The moduli space of Anosov representations of a surface group in a semisimple group admits many more natural functions than the regular functions including length functions and correlation functions. We consider the Atiyah-Bott/Goldman Poisson bracket for length functions and correlation functions and give a formula that computes their Poisson bracket. This is done by introducing a new combinatorial framework including ghost polygons and a ghost bracket encoded in a formal algebra called the ghost algebra. As a consequence, we show that the set of length and correlation functions is stable under the Poisson bracket and give two applications: firstly in the presence of positivity we prove the convexity of length functions, generalising a result of Kerckhoff in Teichmüller space, secondly we exhibit subalgebras of commuting functions associated to laminations. This is joint with François Labourie.

Informations sur la vidéo

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis