2022 - T1 - WS1 - Tissue growth and movement

Collection 2022 - T1 - WS1 - Tissue growth and movement

Organisateur(s) Almeida, Luis ; Audebert, Chloé ; Lepoutre, Thomas ; Lorenzi, Tommaso ; Perthame, Benoît
Date(s) 10/01/2022 - 14/01/2022
URL associée https://indico.math.cnrs.fr/event/6529/
00:00:00 / 00:00:00
9 26

Quantitative modeling of metastasis: cancer at the organism scale

De Sébastien Benzekry

In the majority of solid cancers, secondary tumors (metastases) are the main cause of death. Quantitative mathematical modeling could have important value to 1) test biological theories against empirical data and bring mechanistic insights and 2) design numerical tools predictive of metastatic relapse or the impact of therapies. I will present research efforts towards the establishment of such mathematical constructs descriptive and predictive of metastatic development. The general framework is based on a physiologically-structured partial differential equation for the time dynamics of a population of metastases. Results will be presented for model-based exploration of 1) spontaneous development of metastasis following surgery [1], 2) theoretical models of metastatic spread and growth [2], 3) tumor-tumor systemic interactions [3] as well as recent results modeling paradoxical pro-metastatic effects of anti-angiogenic therapies. If time allows, translation of the models will be presented in two clinical settings: brain metastasis from non-small cell lung cancer [4] and prediction of metastatic relapse in early-stage breast cancer [5]. Together, these results represent a step towards the integration of mathematical modeling for research on metastasis and as a predictive tool for personalized oncology.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2022.T1.WS1.009
  • Citer cette vidéo Benzekry, Sébastien (11/01/2022). Quantitative modeling of metastasis: cancer at the organism scale. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T1.WS1.009
  • URL https://dx.doi.org/10.57987/IHP.2022.T1.WS1.009

Bibliographie

  • 1 - Benzekry, S. et al. / Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach. Cancer Research, vol. 76 (2016), p. 535–547.
  • 2 - Baratchart, E. et al. / Computational Modelling of Metastasis Development in Renal Cell Carcinoma. PLoS Computational Biology, vol. 11 art. e1004626 (2015).
  • 3 Benzekry, S., Lamont, C., Barbolosi, D., Hlatky, L. & Hahnfeldt, P. / Mathematical Modeling of Tumor-Tumor Distant Interactions Supports a Systemic Control of Tumor Growth. Cancer Research, vol. 77 (2017), p. 5183-5193.
  • 4 - Bilous, M. et al. / Quantitative mathematical modeling of clinical brain metastasis dynamics in non-small cell lung cancer. Scientific Reports, vol. 9 art. 13018 (2019).
  • 5 - Nicolò, C. et al. / Machine Learning and Mechanistic Modeling for Prediction of Metastatic Relapse in Early-Stage Breast Cancer. JCO Clinical Cancer Informatics, vol. 4 (2020), p. 259-274.

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis