La vidéo est momentanément indisponible, elle le sera très prochainement...

Luczak and Winkler (refined by Caraceni and Stauffer) showed that is it possible to create a chain of random binary trees $(T_n : n \geq 1)$ so that $T_{n}$ is uniformly distributed over the set of all binary trees with $n$ leaves and such that $T_{n+1}$ is obtained from $T_{n}$ by adding "on leaf". We show that the location where this leaf must be added is far from being uniformly distributed on $T_n$ but is concentrated on a "fractal" subset of $n^{3(2- \sqrt{3})+o(1)}$ leaves. The full multifractal spectrum of the measure in the continuous setting is computed. Joint work with Alessandra Caraceni and Robin Stephenson.

Informations sur la vidéo

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis