La vidéo est momentanément indisponible, elle le sera très prochainement...
Luczak and Winkler (refined by Caraceni and Stauffer) showed that is it possible to create a chain of random binary trees $(T_n : n \geq 1)$ so that $T_{n}$ is uniformly distributed over the set of all binary trees with $n$ leaves and such that $T_{n+1}$ is obtained from $T_{n}$ by adding "on leaf". We show that the location where this leaf must be added is far from being uniformly distributed on $T_n$ but is concentrated on a "fractal" subset of $n^{3(2- \sqrt{3})+o(1)}$ leaves. The full multifractal spectrum of the measure in the continuous setting is computed.
Joint work with Alessandra Caraceni and Robin Stephenson.
Informations sur la vidéo
Dernières questions liées sur MathOverflow
Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow