00:00:00 / 00:00:00

Understanding the growth of Laplace eigenfunctions (part 1 of 2)

De Yaiza Canzani

Apparaît dans la collection : Méthodes microlocales en analyse et géométrie / Microlocal Methods in Analysis and Geometry

In this talk we will discuss a new geodesic beam approach to understanding eigenfunction concentration. We characterize the features that cause an eigenfunction to saturate the standard supremum bounds in terms of the distribution of $L^{2}$ mass along geodesic tubes emanating from a point. We also show that the phenomena behind extreme supremum norm growth is identical to that underlying extreme growth of eigenfunctions when averaged along submanifolds. Using the description of concentration, we obtain quantitative improvements on the known bounds in a wide variety of settings.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19521503
  • Citer cette vidéo Canzani, Yaiza (08/05/2019). Understanding the growth of Laplace eigenfunctions (part 1 of 2). CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19521503
  • URL https://dx.doi.org/10.24350/CIRM.V.19521503

Bibliographie

  • Canzani, Y., & Galkowski, J. (2019). Eigenfunction concentration via geodesic beams. arXiv preprint arXiv:1903.08461. - https://arxiv.org/abs/1903.08461
  • Canzani, Y., & Galkowski, J. (2018). A Novel Approach to Quantitative Improvements for Eigenfunction Averages. arXiv preprint arXiv:1809.06296. - https://arxiv.org/abs/1809.06296
  • Canzani, Y., & Galkowski, J. (2017). On the growth of eigenfunction averages: microlocalization and geometry. arXiv preprint arXiv:1710.07972. - https://arxiv.org/abs/1710.07972
  • Canzani, Y., Galkowski, J., & Toth, J. A. (2018). Averages of eigenfunctions over hypersurfaces. Communications in Mathematical Physics, 360(2), 619-637. - https://arxiv.org/abs/1705.09595

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis