00:00:00 / 00:00:00

The essential skeletons of pairs and the geometric P=W conjecture

De Mirko Mauri

The geometric P=W conjecture is a conjectural description of the asymptotic behavior of a celebrated correspondence in non-abelian Hodge theory. In particular, it is expected that the dual boundary complex of the compactification of character varieties is a sphere. In a joint work with Enrica Mazzon and Matthew Stevenson, we manage to compute the first non-trivial examples of dual complexes in the compact case. This requires to develop a new theory of essential skeletons over a trivially-valued field. As a byproduct, inspired by these constructions, we show that certain character varieties appear in degenerations of compact hyper-Kähler manifolds. In this talk we will explain how these new non-archimedean techniques can shed new light into classical algebraic geometry problems.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.19581303
  • Citer cette vidéo Mauri, Mirko (25/11/2019). The essential skeletons of pairs and the geometric P=W conjecture. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19581303
  • URL https://dx.doi.org/10.24350/CIRM.V.19581303

Bibliographie

  • MAURI, Mirko, MAZZON, Enrica, et STEVENSON, Matthew. Essential skeletons of pairs and the geometric P= W conjecture. arXiv preprint arXiv:1810.11837, 2018. - https://arxiv.org/abs/1810.11837

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis