Tempered representations with unipotent parahoric restriction: a noncommutative geometry viewpoint

De Anne-Marie Aubert

Apparaît dans la collection : 2025 - T1 - WS2 - Tempered representations and K-theory

The category of smooth representations of a $p$-adic group $G$ admits a decomposition into Bernstein blocks. With Paul Baum, Roger Plymen and Maarten Solleveld, we have formulated a conjecture which relates these blocks to (possibly twisted) extended quotients of complex algebraic varieties by finite groups.

In this talk, I will first introduce $p$-adic groups and some of their representations. Next, I will describe the conjecture in the case of tempered representations with unipotent parahoric restriction, focusing on its links with the generalized Springer correspondence for complex disconnected groups and its K-theoretical aspects. As an application, I will show how it can be used to describe the theta correspondence.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2025.T1.WS2.013
  • Citer cette vidéo Aubert, Anne-Marie (27/02/2025). Tempered representations with unipotent parahoric restriction: a noncommutative geometry viewpoint. IHP. Audiovisual resource. DOI: 10.57987/IHP.2025.T1.WS2.013
  • URL https://dx.doi.org/10.57987/IHP.2025.T1.WS2.013

Bibliographie

  • Anne-Marie Aubert, Correspondences between affine Hecke algebras and applications, arXiv:2311.03203.
  • Anne-Marie Aubert, Paul Baum, Roger Plymen and Maarten Solleveld, Morita equivalences for k-algebras, in Quantum Dynamics, Banach Center Publications, Vol. 120, Polish Academy of Sciences Warszawa 2020.
  • Anne-Marie Aubert, Ahmed Moussaoui and Maarten Solleveld, Generalizations of the Springer correspondence and cuspidal Langlands parameters, Manuscripta Math. 157 (2018), 121-192

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis