00:00:00 / 00:00:00

Apparaît dans la collection : Enumerative combinatorics and effective aspects of differential equations Thematic Month Week 5 / Combinatoire énumérative et aspects effectifs des équations différentielles Mois thématique semaine 5

The mini-course is structured into three parts. In the first part, we provide a general overview of the tools available in the summation package Sigma, with a particular focus on parameterized telescoping (which includes Zeilberger's creative telescoping as a special case) and recurrence solving for the class of indefinite nested sums defined over nested products. The second part delves into the core concepts of the underlying difference ring theory, offering detailed insights into the algorithmic framework. Special attention is given to the representation of indefinite nested sums and products within the difference ring setting. As a bonus, we obtain a toolbox that facilitates the construction of summation objects whose sequences are algebraically independent of one another. In the third part, we demonstrate how this summation toolbox can be applied to tackle complex problems arising in enumerative combinatorics, number theory, and elementary particle physics.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20316003
  • Citer cette vidéo Schneider, Carsten (27/02/2025). Summation theory of difference rings and applications - lecture 3. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20316003
  • URL https://dx.doi.org/10.24350/CIRM.V.20316003

Bibliographie

  • SCHNEIDER, Carsten. Symbolic summation assists combinatorics. Sém. Lothar. Combin, 2007, vol. 56, no 1-36, p. B56b. - http://eudml.org/doc/224549
  • SCHNEIDER, Carsten. Simplifying multiple sums in difference fields. Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, 2013, p. 325-360. - https://doi.org/10.1007/978-3-7091-1616-6_14
  • SCHNEIDER, Carsten. Term algebras, canonical representations and difference ring theory for symbolic summation. Anti-Differentiation and the Calculation of Feynman Amplitudes, 2021, p. 423-485. - https://doi.org/10.1007/978-3-030-80219-6_17

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis