

Ergodic theory of the geodesic flow of hyperbolic surfaces - Lecture 1
De Barbara Schapira


Ergodic theory of the geodesic flow of hyperbolic surfaces - Lecture 2
De Barbara Schapira
De Yosef Yomdin
Apparaît dans les collections : Real analytic geometry and trajectories of vector fields / Géométrie analytique réelle et trajectoires de champs de vecteurs, Exposés de recherche
Smooth parametrization consists in a subdivision of mathematical objects under consideration into simple pieces, and then parametric representation of each piece, while keeping control of high order derivatives. The main goal of the talk is to provide a short overview of some results and open problems on smooth parametrization and its applications in several apparently separated domains: Smooth Dynamics, Diophantine Geometry, and Approximation Theory. The structure of the results, open problems, and conjectures in each of these domains shows in many cases a remarkable similarity, which I’ll try to stress. Sometimes this similarity can be easily explained, sometimes the reasons remain somewhat obscure, and it motivates some natural questions discussed in the talk. I plan to present also some new results, connecting smooth parametrization with “Remez-type” (or “Norming”) inequalities for polynomials restricted to analytic varieties.