00:00:00 / 00:00:00

Singular Supports in Equal and Mixed Characteristics (1/4)

De Takeshi Saito

Apparaît dans la collection : Takeshi Saito : Singular Supports in Equal and Mixed Characteristics

Beilinson defined the singular support of a constructible sheaf on a smooth scheme over a field as a closed conical subset on the cotangent bundle. He further proved its existence and fundamental properties, using Radon transform as a crucial tool. In first lectures, we formulate the definition in a slightly different but equivalent way, using an interpretation by Braverman—Gaitsgory of the local acyclicity. We also recall Beilinson's proof of existence. In mixed characteristics, the theory is still far from complete. As a replacement of the cotangent bundle, we introduce the Frobenius—Witt cotangent bundle, that has the correct rank but defined only on the characteristic p fiber. Using it, we define the singular support and its relative variant. Finally, we show that Beilinson's argument using the Radon transform gives a proof of the existence of the saturation of the relative variant.

Informations sur la vidéo

  • Date de captation 18/09/2025
  • Date de publication 18/09/2025
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs, Doctorants
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis