![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
Apparaît dans la collection : Diophantine approximation and transcendence / Approximation diophantienne et transcendance
As is well known, simultaneous rational approximations to the values of smooth functions of real variables involve counting and/or understanding the distribution of rational points lying near the manifold parameterised by these functions. I will discuss recent results in this area regarding lower bounds for the Hausdorff dimension of $\tau$-approximable values, where $\tau\geq \geq 1/n$ is the exponent of approximations. In particular, I will describe a very recent development for non-degenerate maps as well as a recently introduced simple technique based on the so-called Mass Transference Principle that surprisingly requires no conditions on the functions except them being $C^2$.