00:00:00 / 00:00:00

Search, Reason or Recombine? Paradigms for Scaling Formal Proving

De Fabian Glöckle

Apparaît dans la collection : Mathematics for an by Large Language Models – 2025 Edition

In the effort to scale test-time computation for language models on mathematical benchmarks, two prominent paradigms have emerged: large-scale search with reinforcement learning, exemplified by methods like AlphaProof, and long chain-of-thought reasoning with emergent self-verification, as seen in models like o1. For the future of reinforcement learning in formal theorem proving, this opens up a spectrum of hybrid methods. These range from line-level tree search with environment feedback to multi-turn iterative whole proof generation, with and without integrated informal reasoning, to hierarchical problem decompositions and recombination of partial proofs. I will explain these methods as inference methods and discuss the challenges faced when applying reinforcement learning to them.

Informations sur la vidéo

  • Date de captation 22/05/2025
  • Date de publication 30/05/2025
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis