00:00:00 / 00:00:00

Ricci curvature, fundamental group and the Milnor conjecture (I)

De Aaron Naber

Apparaît dans la collection : Not Only Scalar Curvature Seminar

It was conjectured by Milnor in 1968 that the fundamental group of a complete manifold with nonnegative Ricci curvature is finitely generated. In this talk we will discuss a counterexample, which provides an example $M^7$ with $\mathrm{Ric}>= 0$ such that $\pi_1(M)=Q/Z$ is infinitely generated. There are several new points behind the result. The first is a new topological construction for building manifolds with infinitely generated fundamental groups, which can be interpreted as a smooth version of the fractal snowflake. The ability to build such a fractal structure will rely on a very twisted gluing mechanism. Thus the other new point is a careful analysis of the mapping class group $\pi_0(\mathrm{Diff}(S^3\times S^3))$ and its relationship to Ricci curvature. In particular, a key point will be to show that the action of $\pi_0(\mathrm{Diff}(S^3\times S^3))$ on the standard metric $g_{S^3\times S^3}$ lives in a path connected component of the space of metrics with $\mathrm{Ric}>0$.

Informations sur la vidéo

  • Date de captation 15/11/2023
  • Date de publication 05/12/2023
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs, Doctorants
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow


  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis