00:00:00 / 00:00:00

The motion of a two-dimensional perfect fluid can be described as an area preserving rearrangement of the initial vorticity that conserve the kinetic energy. In the infinite time limit, vorticity mixing is conjectured to occur for most initial conditions. A.I. Shnirelman in ’93 introduced the concept of maximally mixed states, by requiring that any further mixing of them would necessarily change their energy, and showed they are perfect fluid equilibria. We offer a new perspective on this theory by proving that many of them can be obtained as minimizers of a variational problem. We also show that maximally mixed states, in general, need not conform to the geometry of the domain. In particular, in a straight periodic channel, we find non stationary states which can be arbitrarily close to any shear flow in L^1 of vorticity but cannot converge back to a shear flow in the long-time limit. This is a joint work with T. D. Drivas.

Informations sur la vidéo

  • Date de captation 09/06/2023
  • Date de publication 09/12/2025
  • Institut Institut Fourier
  • Langue Anglais
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis