Noncommutative Lambda_p-sets and the additivity problems

De Stanislaw Szarek

Apparaît dans la collection : 2024 - PC2 - Random tensors and related topics

Constructions of counterexamples to additivity problems in quantum information theory along the lines pioneered by Hayden-Winter and Hastings requires solving various sharp instances of Dvoretzky's theorem for Schatten classes. The most efficient technology to obtain such solutions is to consider "random" subspaces, which is not fully satisfactory. In the commutative setting, similar questions led to the concept of Lambda_p-sets, i.e., collections of characters on an Abelian group such that the p-norm and the 2-norm are approximately equivalent on the linear span of those characters. The ultimate results in this area were obtained by Rudin, Bourgain and Talagrand (1960s through 1990s). Some - but not all - of the constructions of Lambda_p-sets sets are explicit. In the present talk we will outline some of the above-mentioned results and report on the attempts to adapt the techniques to the non-commutative context, which will in particular lead to random (and pseudo-random) tensors.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2024.PC2.015
  • Citer cette vidéo Szarek, Stanislaw (18/10/2024). Noncommutative Lambda_p-sets and the additivity problems. IHP. Audiovisual resource. DOI: 10.57987/IHP.2024.PC2.015
  • URL https://dx.doi.org/10.57987/IHP.2024.PC2.015

Bibliographie

  • G. Aubrun, S. Szarek, and E. Werner, Non-additivity of R ́enyi entropy and Dvoretzky’s theorem. J. Math. Phys. 51, 022102 (2010).
  • J. Bourgain, Bounded orthogonal systems and the Λ(p)-set problem. Acta Math. 162 (1989), 227-245.
  • P. Hayden and A. Winter, Counterexamples to the maximal p-norm multiplicativity conjecture for all p > 1. Comm. Math. Phys. 284(1):263-280, 2008.
  • V. D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces. Lecture Notes Math. 1200, Springer Verlag, 1986.
  • W. Rudin, Trigonometric series with gaps. J. Math. Mech. 9 (1960), 103-227.

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis