Non-Hermitian expander obtained with Haar distributed unitaries

De Sarah Timhadjelt

Apparaît dans la collection : 2024 - PC2 - Random tensors and related topics

A system in quantum mechanics is modeled by a state, i.e. a $N$ dimensional with trace $1$ positive semidefinite matrix where $N$ is the number of possible values for an observable (e.g. momentum, level of energy). A transformation of such a system, after measurements for instance, is modeled by specific operators on matrices called quantum channels, preserving the set of states. These operators can be seen as the sum of tensor products of unit matrices. As for Markov operators, we are interested in the spectral gap of the quantum channel which can be seen as a quantifier of the distance of the operator to a rank one projector, and one way to optimize the gap is to consider Haar distributed unitaries. A proof of the optimality of the second largest eigenvalue or singular value in the non-Hermitian case is to use Schwinger-Dyson equations previously used by Hastings in the Hermitian case.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2024.PC2.017
  • Citer cette vidéo Timhadjelt, Sarah (18/10/2024). Non-Hermitian expander obtained with Haar distributed unitaries. IHP. Audiovisual resource. DOI: 10.57987/IHP.2024.PC2.017
  • URL https://dx.doi.org/10.57987/IHP.2024.PC2.017

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis