00:00:00 / 00:00:00

Apparaît dans la collection : New Structures and Techniques in $p$-adic Geometry

We will define the categories of (étale, rational) motives over an adic space $S$ and illustrate their most important properties, focusing on relevant applications in the study of $p$-adic cohomology theories. In particular, we will present the six-functor formalism they are equipped with, the continuity/spreading-out property, compact generation, and the identification between an analytic motive over a local field and a monodromy operator acting on its nearby cycle. We will sketch the proofs of these facts, highlighting the role of homotopies at each stage. Several applications will be presented, especially concerning the definition and study of rigid, de Rham, and Hyodo-Kato cohomologies.

Informations sur la vidéo

  • Date de captation 27/10/2025
  • Date de publication 03/11/2025
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis