00:00:00 / 00:00:00

Monte Carlo guided Diffusion for Bayesian linear inverse problems

De Sylvain Le Corff

Apparaît dans la collection : Autumn school in Bayesian Statistics / École d'automne en statistique bayésienne

Ill-posed linear inverse problems that combine knowledge of the forward measurement model with prior models arise frequently in various applications, from computational photography to medical imaging. Recent research has focused on solving these problems with score-based generative models (SGMs) that produce perceptually plausible images, especially in inpainting problems. In this study, we exploit the particular structure of the prior defined in the SGM to formulate recovery in a Bayesian framework as a Feynman–Kac model adapted from the forward diffusion model used to construct score-based diffusion. To solve this Feynman–Kac problem, we propose the use of Sequential Monte Carlo methods. The proposed algorithm, MCGdiff, is shown to be theoretically grounded and we provide numerical simulations showing that it outperforms competing baselines when dealing with ill-posed inverse problems.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20107003
  • Citer cette vidéo Le Corff, Sylvain (31/10/2023). Monte Carlo guided Diffusion for Bayesian linear inverse problems. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20107003
  • URL https://dx.doi.org/10.24350/CIRM.V.20107003

Bibliographie

  • CARDOSO, Gabriel, IDRISSI, Yazid Janati El, CORFF, Sylvain Le, et al. Monte Carlo guided Diffusion for Bayesian linear inverse problems. arXiv preprint arXiv:2308.07983, 2023. - https://arxiv.org/abs/2308.07983

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis
Loading…
Loading the web debug toolbar…
Attempt #