00:00:00 / 00:00:00

Apparaît dans la collection : Integrability, Anomalies and Quantum Field Theory

The elliptic genus of K3 surfaces encrypts an intriguing connection between the sporadic group Mathieu 24 and non-linear sigma models on K3, dubbed “Mathieu Moonshine”. By restricting to Kummer K3 surfaces, which may be constructed as Z2 orbifolds of complex 2-tori with blown up singularities, it has been possible to devise a framework in which the concept of symmetry surfing can be explored and tested in a concrete way. This talk focusses on what has been learned so far that supports the symmetry surfing idea when lifting the Kummer construction to the level of conformal field theory, with particular emphasis on quarter BPS states. Some of these states enter the elliptic genus with opposite signs thus cancelling each other when counted by this index, yet they carry interesting information that should help understand Mathieu Moonshine.

Informations sur la vidéo

  • Date de captation 11/02/2020
  • Date de publication 15/02/2020
  • Institut IHES
  • Licence CC BY-NC-ND
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis