00:00:00 / 00:00:00

Łukasiewicz Logic and Tsallis Entropy Connected with Free Projections in the Free and Conditionally Free Probability

De Marek Bożejko

Apparaît dans la collection : Combinatorics and Arithmetic for Physics

In my talk, we consider the following topics: 1. Free and C-free probability and completely positive maps. 2. Free independent projections as a model of Jozef Łukasiewicz $n$-valued logic, $n > 2$, and also a model of continuous logic of Łukasiewicz–Tarski. 3. Main Theorem: If $q$ is a real number and $x, y$ are from interval $(0, 1)$, then the Tsallis entropy is defined as $$ T_q (x, y) = (x_1-q + y_1-q-1)^{\frac{1}{1-q}} $$ Then we have: If $P$ and $Q$ are free independent in some probability space $(A, tr)$ with trace $tr$ state on $A$, and $tr(P) = x$, $tr(yQ) = y$, then $tr(P^Q) = T_0(x, y)$. If $P$ and $Q$ are Boolean independent, then $tr(P Q) = T_2(x, y)$ and relations with Dagum distributions, which are called log-logistic distributions in many statistics models. If $P$ and $Q$ are classically independent then $tr(P^Q) = T_1(x, y) = lim_{q\to 1}T_S (x, y)$, as t tends to 1. Here the projection $P^Q$ is the smallest projection on the closed linear span of $Im(P)$ and $Im(Q)$. The generalizations of cases of Tsallis entropy $T_q$, for $q$ in $(0, 1)$, we will use conditionally free independent projections. 4. Remarks on the free product of quantum channels. References: 1. M. Bożejko, Positive definite functions on the free group and the noncommutative Riesz product, Boll. Un. Mat. Ital. (6) 5-A (1986), 13–21. 2. M. Bożejko, Remarks on free projections, Heidelberg Seminar 1999. 3. W. Mlotkowski, Operator-valued version of conditionally free product, Studia Math. 153:13–30, (2002). 4. M. Bożejko, Projections in free and Boolean probability with applications to J. Lukasiewicz logic, Conference on Quantum Statistics and Related Topics, Lodz, 10 pp., 2018. 5. M. Bożejko, Conditionally free probability, in Signal Proceeding and Hypercomplex Analysis, 139–147, 2019.

Informations sur la vidéo

  • Date de captation 21/11/2025
  • Date de publication 26/11/2025
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis