50:36
publiée le 6 février 2026
On some deterministic version of the random walk on $\mathbb{Z}^d$
De Dalia Terhesiu
Apparaît dans la collection : Probabilistic limit theorems for dynamical systems / Théorèmes limites probabilistes pour les systèmes dynamiques
We investigate the diffusion and statistical properties of Lorentz gas with cusps at flat points. This is a modification of dispersing billiards with cusps. The decay rates are proven to depend on the degree of the flat points, which varies from $n^{-a}$, for $ a\in (0,\infty)$. The stochastic processes driven by these systems enjoy stable law and have super-diffusion driven by Lévy process. This is a joint work with Paul Jung and Françoise Pène.