Large time behavior of solutions to 3-D MHD system with initial data near equilibrium
De Ping Zhang
Apparaît dans la collection : Vorticity, rotation and symmetry (IV): Complex fluids and the issue of regularity / Vorticité, rotation et symétrie (IV) : fluides complexes et problèmes de régularité
Given initial data $(b_0, u_0)$ close enough to the equilibrium state $(e_3, 0)$, we prove that the 3-D incompressible MHD system without magnetic diffusion has a unique global solution $(b, u)$. Moreover, we prove that $(b(t) - e_3, u(t))$ decay to zero with rates in both $L^\infty$ and $L^2$ norm. (This is a joint work with Wen Deng).