00:00:00 / 00:00:00

Integrable Systems on (Multiplicative) Quiver Varieties

De Maxime Fairon

Apparaît dans la collection : Workshop on Quantum Geometry

Following the pioneering work of Wilson who realized the phase space of the (classical complex) Calogero-Moser system as a quiver variety, Chalykh and Silantyev observed in 2017 that various generalizations of this integrable system can be constructed on quiver varieties associated with cyclic quivers. Building on these results, I will explain how such systems can be visualized at the level of quivers, and how to prove that we can form (degenerately) integrable systems. I will then outline how this construction can be adapted to obtain generalizations of the Ruijsenaars-Schneider system if one uses multiplicative quiver varieties associated with the same quivers. The main tool that I want to advertise is the notion of double (quasi-) Poisson brackets due to Van den Bergh. This talk is partly based on previous works with Oleg Chalykh and Tamás Görbe.

Informations sur la vidéo

  • Date de captation 28/04/2022
  • Date de publication 01/05/2022
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis