

Lecture 3: What is the Universal Scaling Limit of Random Interface Growth, and What Does It Tell Us?
De Ivan Corwin


Coulomb gas approach to conformal field theory and lattice models of 2D statistical physics
De Stanislav Smirnov
Apparaît dans la collection : 2024 - PC2 - Random tensors and related topics
The injective norm is a natural generalization to tensors of the operator norm of a matrix. In quantum information, the injective norm is one important measure of genuine multipartite entanglement of quantum states, where it is known as the geometric entanglement. We give a high-probability upper bound on the injective norm of real and complex Gaussian random tensors, corresponding to a lower bound on the geometric entanglement of random quantum states. The proof is based on spin-glass methods, the Kac—Rice formula, and recent progress coming from random matrices. Joint work with Stéphane Dartois.