00:00:00 / 00:00:00

Inequalities defining polyhedral realizations and monomial realizations ofcrystal bases

De Yuki Kanakubo

Apparaît dans la collection : Combinatorics and Arithmetic for Physics - 2024

Crystal bases $B(\infy)$, $B(\lambda)$ are powerful tools to study representations of Lie algebras and quantum groups. We can get several essential information of integrable highest weight representations or Verma modules from $B(\lambda)$ or $B(\infty)$. To obtain such information from crystal bases, we need to describe them by combinatorial objects. The polyhedral realizations invented by Nakashima-Zelevinsky are combinatorial descriptions for $B(\infty)$ in terms of the set of integer points of a convex cone, which coincides with the string cone when the associated Lie algebra is finite dimensional simple. It is a fundamental and natural problem to find an explicit form of this convex cone. The monomial realizations introduced by Kashiwara and Nakajima are combinatorial expressions of crystal bases $B(\lambda)$ as Laurent monomials in double indexed variables. In this talk, we give a conjecture that the inequalities defining the cone of polyhedral realizations can be expressed in terms of monomial realizations of fundamental representations

Informations sur la vidéo

  • Date de captation 22/11/2024
  • Date de publication 03/12/2024
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis