The Dolbeault-Dirac operator on the irreducible quantum flag manifolds

De Fredy Diaz Garcia

Apparaît dans la collection : 2025 - T1 - Representation theory and noncommutative geometry

In this talk I will comment about some aspects in the construction of the Dolbeault-Dirac operator $d+d*$ associated to some type of quantum homogeneous spaces generalizing the classical construction of the Rham complex of smooth manifolds. I will introduce a quantum version of the Bernstein-Gelfand-Gelfand resolution of irreducible quantum flag manifolds in order to dualize it in some way to get the Dolbeault complex and define the Dolbeault-Dirac operator. If time permits, I will give the example of the irreducible quantum flag of type $B_2$ for which the Dolbeault-Dirac operator leads to a spectral triple in the sense of Connes, also I will give some comments on the case of the quantum Grassmanian $Gr(2,4)$ which is an ongoing project joint with E. Wagner.

Informations sur la vidéo

Bibliographie

  • B. Das, R. Ó Buachalla, P. Somberg. A Dolbeault-Dirac spectral triple for the quantum projective space. Doc. Math. 25 (2020), 1079-1157.
  • F. Díaz García, R. Ó Buachalla, E. Wagner. A Dolbeault-Dirac spectral triple for the $B_2$-irreducible quantum flag manifold. Comm. Math. Phys. 395 (2022), 365-403.
  • I. Heckenberger, S. Kolb. The Rham complex for quantized irreducible flag manifolds. Journal of Algebra. 305 (2006), 704-741.
  • I. Heckenberger, S. Kolb. Differential forms via the Bernstein-Gelfand-Gelfand resolution for quantized irreducible flag manifolds. Journal of Geometry and Physics. 57 (2007), 2316-2344.

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis