00:00:00 / 00:00:00

High-dimentional classification with deep neural networks: decision boundaries, noise, and margin

De Philipp Petersen

Apparaît dans la collection : SIGMA (Signal, Image, Geometry, Modeling, Approximation) / SIGMA (Signal, Image, Géométrie, Modélisation, Approximation)

we discuss classification problems in high dimension. We study classification problems using three classical notions: complexity of decision boundary, noise, and margin. We demonstrate that under suitable conditions on the decision boundary, classification problems can be very efficiently approximated, even in high dimensions. If a margin condition is assumed, then arbitrary fast approximation rates can be achieved, despite the problem being high-dimensional and discontinuous. We extend the approximation results ta learning results and show close ta optimal learning rates for empirical risk minimization in high dimensional classification.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20257603
  • Citer cette vidéo Petersen, Philipp (29/10/2024). High-dimentional classification with deep neural networks: decision boundaries, noise, and margin. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20257603
  • URL https://dx.doi.org/10.24350/CIRM.V.20257603

Bibliographie

  • PETERSEN, Philipp et VOIGTLAENDER, Felix. Optimal approximation of piecewise smooth functions using deep ReLU neural networks. Neural Networks, 2018, vol. 108, p. 296-330. - https://doi.org/10.1016/j.neunet.2018.08.019
  • CARAGEA, Andrei, PETERSEN, Philipp, et VOIGTLAENDER, Felix. Neural network approximation and estimation of classifiers with classification boundary in a Barron class. The Annals of Applied Probability, 2023, vol. 33, no 4, p. 3039-3079. - https://doi.org/10.1214/22-AAP1884
  • KIM, Yongdai, OHN, Ilsang, et KIM, Dongha. Fast convergence rates of deep neural networks for classification. Neural Networks, 2021, vol. 138, p. 179-197. - https://doi.org/10.1016/j.neunet.2021.02.012
  • IMAIZUMI, Masaaki et FUKUMIZU, Kenji. Deep neural networks learn non-smooth functions effectively. In : The 22nd international conference on artificial intelligence and statistics. PMLR, 2019. p. 869-878. - https://proceedings.mlr.press/v89/imaizumi19a.html
  • LERMA-PINEDA, Andres Felipe, PETERSEN, Philipp, FRIEDER, Simon, et al. Dimension-independent learning rates for high-dimensional classification problems. arXiv preprint arXiv:2409.17991, 2024. - https://doi.org/10.48550/arXiv.2409.17991
  • GARCIA J., PETERSEN P., Classification problem with Barron regular boundaries and margin condition, ta appear 2024 -

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis