00:00:00 / 00:00:00

Global well posedness and soliton resolution for the half-wave maps equation with rational data

De Enno Lenzmann

Apparaît dans la collection : Dispersive Integrable Equations: Pathfinders in Infinite-Dimensional Hamiltonian Systems / Équations Intégrables Dispersives, Pionniers des Systèmes Hamiltoniens en Dimension Infinie

In this talk, I discuss the energy-critical half-wave maps equation (HWM). It has been known for quite some time that (HWM) is completely integrable with a Lax pair structure. However, the question about global-in-time existence of solutions has been completely open so far — even for smooth and sufficiently small initial data. I will present very recent results that prove global well-posedness for rational initial data (with no size restriction) along with a general soliton resolution result in the large-time limit. The proofs strongly exploit the Lax structure of (HWM) in combination with an explicit flow formula. This is joint work with Patrick Gérard (Paris-Saclay).

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20344503
  • Citer cette vidéo Lenzmann, Enno (29/04/2025). Global well posedness and soliton resolution for the half-wave maps equation with rational data. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20344503
  • URL https://dx.doi.org/10.24350/CIRM.V.20344503

Bibliographie

  • GÉRARD, Patrick et LENZMANN, Enno. Global Well-Posedness and Soliton Resolution for the Half-Wave Maps Equation with Rational Data. arXiv preprint arXiv:2412.03351, 2024. - https://doi.org/10.48550/arXiv.2412.03351

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis