Global variants of complex integrable systems

De Valdo Tatischeff

Apparaît dans la collection : 2025 - T2 - WS1 - Higher rank geometric structures, Higgs bundles and physics

The Coulomb branch of any $N=2$ supersymmetric gauge theory on $\mathbb{R}^3\times\mathbb{S}^1$ is a complex integrable system, for instance a Hitchin system when the gauge theory belongs to class S. Notable historical examples include the Toda chains, corresponding to pure super Yang–Mills theories, and the elliptic Calogero–Moser systems, associated with the so-called $N=2*$ theories. Around 10–15 years ago, it was further recognized that a complete definition of a Yang–Mills theory in four dimensions must also specify its spectrum of Wilson–'t Hooft line operators, leading to what is now termed a global variant of a $4d$ gauge theory. This refinement plays a crucial role in understanding non-abelian electric–magnetic duality. While the choice of global variant has relatively mild consequences when the theory is considered on $\mathbb{R}^4$, it becomes much more significant when the theory is placed on $\mathbb{R}^3\times\mathbb{S}^1$—precisely the setup where the correspondence with integrable systems is most direct. Focusing on the case of Calogero–Moser systems, I will explain how the notion of a global variant for $N=2$ gauge theories translates into a corresponding notion for complex integrable systems, giving rise to families of integrable systems associated with Lie groups rather than Lie algebras—or more precisely, with global variants of Lie groups.

Informations sur la vidéo

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis