Geometrical finiteness in strictly convex projective geometry

De Pierre-Louis Blayac

Apparaît dans la collection : 2025 - T2 - WS2 - Low-dimensional phenomena: geometry and dynamics

Roughly speaking, a complete real hyperbolic manifold is geometrically finite if its convex core is the union of a compact set and finitely many ends that are isometric to ends of manifolds with elementary parabolic holonomy. This notion admits many different characterizations, and has been generalized to much broader settings such as rank-one symmetric spaces, Hadamard manifolds, or even convergence group actions.

A decade ago, Crampon and Marquis extended this notion to (strictly) convex (real) projective geometry. A domain in the real projective space is properly convex if it is contained in some affine chart, where it is bounded and convex.

Crampon--Marquis introduced two distinct notions geometrical finiteness for quotients of convex domain that are round, i.e. strictly convex with differentiable boundary. One notion is more restrictive than the other, and they proved that most of the usual characterizations of geometrical finiteness are equivalent to their strong definition. Unfortunately a mistake slipped into the proof and the situation is more complex than expected, hence more interesting.

We will review their work, evoke the link with relative Anosov groups through work of Zhu--Zimmer and Fléchelles, and see an example in $\mathrm{SL}(5,\mathbb R)$ where the finite volume characterization of geometrical finiteness fails.

Informations sur la vidéo

Bibliographie

  • Finitude géométrique en géométrie de Hilbert (Crampon--Marquis)
  • On convex projective manifolds and cusps (Cooper--Long--Tillmann)
  • Deforming convex projective manifolds (Cooper--Long--Tillmann)
  • Relative Anosov representations via flows I & II (Zhu--Zimmer)
  • Patterson–Sullivan measures for transverse subgroups (Canary--Zhang--Zimmer)
  • Geometric finiteness in convex projective geometry (Balthazar Fléchelles, PhD thesis)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis