00:00:00 / 00:00:00

Apparaît dans la collection : Matrix Models for Quantum Systems – Special Day of the Seed Seminar of Mathematics and Physics

We solve a long-standing conjecture by Barker, proving that the minimal and maximal tensor products of two finite-dimensional proper cones coincide if and only if one of the two cones is generated by a linearly independent set. Here, given two proper cones $C1, C2$, their minimal tensor product is the cone generated by products of the form $x1 \otimes x2$, where $x1 \in C1$ and $x2 \in C2$, while their maximal tensor product is the set of tensors that are positive under all product functionals $f1 \otimes f2$, where $f1$ is positive on $C1$ and $f2$ is positive on $C2$. Our proof techniques involve a mix of convex geometry, elementary algebraic topology, and computations inspired by quantum information theory. Our motivation comes from the foundations of physics: as an application, we show that any two non-classical systems modelled by general probabilistic theories can be entangled.

Informations sur la vidéo

  • Date de captation 07/06/2024
  • Date de publication 09/06/2024
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis