00:00:00 / 00:00:00

Apparaît dans la collection : Hadamard Lectures 2025 – Thomas Hutchcroft –Dimension Dependence of Critical Phenomena in Percolation

In Bernoulli bond percolation, we delete or retain each edge of a graph independently at random with some retention parameter p and study the geometry of the connected components (clusters) of the resulting subgraph. For lattices of dimension d>1, percolation has a phase transition, with a infinite cluster emerging at a critical probability pc(d). It is believed that critical percolation at and near the critical probability exhibits rich, fractal-like geometry that is expected to be approximately independent of the choice of lattice but highly dependent on the dimension d. In particular, various qualitative distinctions are expected between the low dimensional case d<6, the high-dimensional case d>6, and the critical case d=6, but this remains poorly understood particularly in dimensions d=3,4,5,6. In this course, I will give an overview of of what is known about critical percolation, focussing on recent advances in long-range and hierarchical models for which various aspects of intermediate-dimensional critical phenomena can now be understood rigorously.

Informations sur la vidéo

  • Date de captation 16/05/2025
  • Date de publication 17/05/2025
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs, Doctorants
  • Format MP4

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis