![[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze](/media/cache/video_light/uploads/video/Bourbaki.png)

[1239] The geometrization of the local Langlands correspondence, after Fargues and Scholze
De Ana Caraiani


Extremal eigenvectors, the spectral action, and the zeta spectral triple
De Alain Connes
Apparaît dans les collections : Arithmetics, geometry, cryptography and coding theory / Arithmétique, géométrie, cryptographie et théorie des codes, Exposés de recherche
Let $E$ be an elliptic curve over a number field $K$. For each integer $n > 1$ the action of the absolute Galois group $G_K := Gal(\overline{K}/K)$ on the $n$-torsion subgroup $E [n]$ induces a Galois representation $\rho_{E,n}:G_K \rightarrow$ Aut$(E[n]) \backsimeq GL_2(\mathbb{Z} /n\mathbb{Z})$. The representations $\rho_{E,n}$ form a compatible system, and after taking inverse limits one obtains an adelic representation $\rho_E:G_K \rightarrow GL_2(\hat{\mathbb{Z}})$. If $E/K$ does not have $CM$, then Serre’s open image theorem implies that the image of $\rho_E$ has finite index in $GL_2(\hat{\mathbb{Z}})$; in particular, $\rho_{E,\ell}$ is surjective for all but finitely many primes $\ell$. I will present an algorithm that, given an elliptic curve $E/K$ without $CM$, determines the image of $\rho_{E,\ell}$ in $GL_2(\mathbb{Z} /\ell\mathbb{Z})$ up to local conjugacy for every prime $\ell$ for which $\rho_{E,\ell}$ is non-surjective. Assuming the generalized Riemann hypothesis, the algorithm runs in time that is polynomial in the bit-size of the coefficients of an integral Weierstrass model for $E$. I will then describe a probabilistic algorithm that uses this information to compute the index of $\rho_E$ in $GL_2(\hat{\mathbb{Z}})$.