00:00:00 / 00:00:00

Apparaît dans la collection : Singularities / Singularités

I will talk about a joint work with Novikov on 'complex cells', which are a complexification of the cells/cylinders used in o-minimality theory. It turns out that complex cells admit a canonical hyperbolic metric which is not directly accessible in the real setting, leading to a much richer structure theory. In particular, complex cells are closer than real cells to resolution of singularities - and many of their basic properties are inspired by this connection. Our main motivation for introducing complex cells was to prove a sharper form of the Yomdin-Gromov lemma, leading to some applications in dynamics and number theory. I will outline how complex cells can be used to achieve this, and in particular how their hyperbolic structure leads to much sharper constructions compared to the previously existing methods.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20095403
  • Citer cette vidéo Binyamini Gal (25/09/2023). Complex cellular structures - Lecture 1. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20095403
  • URL https://dx.doi.org/10.24350/CIRM.V.20095403

Bibliographie

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis