00:00:00 / 00:00:00

Causal Lifting of Neural Representations: Zero-Shot Generalization for Causal Inferences

De Riccardo Cadei

Apparaît dans la collection : 2025 Huawei-IHES Workshop on Causality in the Era of AI : From Theory to Practice

In many scientific domains, the cost of data annotation limits the scale and pace of experimentation. Yet, modern machine learning systems offer a promising alternative—provided their predictions yield correct conclusions. We focus on Prediction-Powered Causal Inferences (PPCI), i.e., estimating the treatment effect in a target experiment with unlabeled factual outcomes, retrievable zero-shot from a pre-trained model. We first identify the conditional calibration property to guarantee valid PPCI at population level. Then, we introduce a new necessary ``causal lifting'' constraint transferring validity across experiments, which we propose to enforce in practice in Deconfounded Empirical Risk Minimization, our new model-agnostic training objective. We validate our method on synthetic and real-world scientific data, offering solutions to instances not solvable by vanilla Empirical Risk Minimization and invariant training. In particular, we solve zero-shot PPCI on the ISTAnt dataset for the first time, fine-tuning a foundational model on our replica dataset of their ecological experiment with a different recording platform and treatment.

Informations sur la vidéo

  • Date de captation 26/05/2025
  • Date de publication 31/05/2025
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis