00:00:00 / 00:00:00

Apparaît dans la collection : Conférence à la mémoire de Jean-Pierre Demailly

Consider a homogeneous polynomial P with integer coefficents. Its “naive” height is, in classical Diophantine geometry, defined as the maximum of the absolute values of the coefficients of P. More generally, in the framework of Arakelov geometry, the height is a real number, depending on the choice of a Hermitian metric on the hyperplane line bundle over the complex projective variety X, cut out by P. In a recent joint work with Rolf Andreasson we introduce a canonical height, obtained by taking the metric in question to be Kähler-Einstein - if such a metric exists. This canonical height has several useful properties. In particular, it can be expressed as a limit of periods on the N-fold products XN, as N tends to infinity. In this talk I will explain how this leads to an explicit expression for the canonical height of any diagonal homogeneous polynomial P in three variables. The formula involves the Hurwitz zeta function and its derivative at s=−1. Some connections to Shimura curves and Parshin's conjectural arithmetic Miyaoka–Yau type inequality will also be pointed out. No prior knowledge of Arakelov geometry will be assumed.

Informations sur la vidéo

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis