C-algebras for real reductive symmetric spaces and K-theory

De Shintaro Nishikawa

Apparaît dans la collection : 2025 - T1 - WS3 - Analysis on homogeneous spaces and operator algebras

To a real reductive symmetric space $G/H$, we may associate one and often two C_-algebras. The first corresponds to the support of the Plancherel measure for the regular representation on $L^2(G/H)$, while the second corresponds to the subset of the support consisting of irreducible representations that admit $H$-fixed distributions. The latter C_-algebra exists for favorable classes of symmetric spaces.

We investigate the structure and properties of these $C^*$-algebras, leveraging the established Plancherel theory for $G/H$: the Plancherel decomposition developed by Erik van den Ban, Patrick Delorme, and Henrik Schlichtkrull, as well as the theory of discrete series representations, as studied by Flensted-Jensen, Oshima--Matsuki, Schlichtkrull, and others. We also discuss subtle aspects that seem not immediate from these results.

This is joint work with A. Afgoustidis, N. Higson, P. Hochs, and Y. Song.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2025.T1.WS3.002
  • Citer cette vidéo Nishikawa, Shintaro (24/03/2025). C-algebras for real reductive symmetric spaces and K-theory. IHP. Audiovisual resource. DOI: 10.57987/IHP.2025.T1.WS3.002
  • URL https://dx.doi.org/10.57987/IHP.2025.T1.WS3.002

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis