00:00:00 / 00:00:00

Baily-Borel Compactifications of Period Images and the b-semiampleness Conjecture

De Benjamin Bakker

Apparaît dans la collection : Arithmetic and Diophantine Geometry, via Ergodic Theory and o-minimality

We address two questions related to the semiampleness of line bundles arising from Hodge theory. First, we prove there is a functorial compactification of the image of a period map of a polarizable integral pure variation of Hodge structures for which a natural line bundle extends amply. This generalizes the Baily--Borel compactification of a Shimura variety, and for instance produces Baily--Borel type compactifications of moduli spaces of Calabi--Yau varieties. We prove more generally that the Hodge bundle of a Calabi--Yau variation of Hodge structures is semiample subject to some extra conditions, and as our second result deduce the b-semiampleness conjecture of Prokhorov--Shokurov. The semiampleness results crucially use o-minimal GAGA, and the deduction of the b-semiampleness conjecture uses work of Ambro and results of Koll\'ar on minimal lc centers to verify the extra conditions geometrically. This is joint work with S. Filipazzi, M. Mauri, and J. Tsimerman.

Informations sur la vidéo

  • Date de captation 09/09/2025
  • Date de publication 16/09/2025
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis