Apparaît dans la collection : Diophantine geometry / Géométrie diophantienne
It is classical that, for example, there is a simple abelian variety of dimension $4$ which is not the jacobian of any curve of genus $4$, and it is not hard to see that there is one defined over the field of all algebraic numbers $\overline{\bf Q}$. In $2012$ Chai and Oort asked if there is a simple abelian fourfold, defined over $\overline{\bf Q}$, which is not even isogenous to any jacobian. In the same year Tsimerman answered ''yes''. Recently Zannier and I have done this over the rationals $\bf Q$, and with ''yes, almost all''. In my talk I will explain ''almost all'' the concepts involved.