00:00:00 / 00:00:00

In these lectures I will focus on the Riemann-Roch theorem in Arakelov geometry, in the specific context of some simple Shimura varieties. For suitable data, the cohomological part of the theorem affords an interpretation in terms of both holomorphic and non-holomorphic modular forms. The formula relates these to arithmetic intersection numbers, that can sometimes be evaluated through variants of the first Kroenecker limit formula. I will first explain these facts, and then show how the Jacquet-Langlands correspondence allows to relate arithmetic intersection numbers for different Shimura varieties, whose associated groups are closely related.

Informations sur la vidéo

  • Date de captation 29/06/2017
  • Date de publication 18/02/2026
  • Institut Institut Fourier
  • Langue Anglais
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis