00:00:00 / 00:00:00

Apparaît dans la collection : Physique mathématique des nombres de Hurwitz pour débutants

The "topological recursion" defines a double family of "invariants" $W_{g,n}$ associated to a "spectral curve" (which we shall define). The invariants $W_{g,n}$ are meromorphic $n$-forms defined by a universal recursion relation on $|\chi|=2g-2+n$, the initial terms $W_{0,1}$ and $W_{0,2}$ being the canonical 1-form and 2-form on the spectral curve. Those invariants have fascinating mathematical properties, they are "symplectic invariants" (invariants under some symplectic transformations of the spectral curve), they are almost modular forms, they satisfy Hirota-like equations, they satisfy some form-cycle duality deformation relations (generalization of Seiberg-Witten), they are stable under many singular limits, and enjoy many other fascinating properties... Moreover, specializations of those invariants recover many known invariants, including Hurwitz numbers to which this conference is dedicated (see M. Kazarian' lecture), intersection numbers, Gromov-Witten invariants, numbers of maps (Tutte's enumeration of maps), or asymptotics of random matrices expectation values. And since very recently, it is conjectured that they also include knot polynomials (Jones, HOMFLY, super polynomials...), which provides an extension of the volume conjecture. We shall present a few examples and mention how these invariants were first discovered in random matrix theory, and then observed or conjectured in many other areas of maths and physics.

Informations sur la vidéo

  • Date de captation 13/02/2014
  • Date de publication 07/03/2014
  • Institut IHES
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis