00:00:00 / 00:00:00

These lectures concern the Euler and Navier-Stokes equations, which are models for incompressible fluid flow. The focus is the mathematical analysis of these partial differential equations.We will discuss the main steps and ideas for local-in-time well-posedness of classical solutions, the problem of singularity formation and the Beale-Kato-Majda criterion and, finally, the issue of vortex stretching in three dimensions.We then begin discussing weak solutions. We will explain the construction and proof of global-in-time existence of Leray-Hopf weak solutions of the 3D Navier-Stokes equations and the weak-strong uniqueness theorem due to Prodi-Serrin. Lastly we consider the special case of 2D flows and we will discuss results for weak solutions, in particular the Yudovich uniqueness theorem. In view of time constraints it will only be possible to give rough sketches of proofs but we will provide references where further details can be found. These lectures aim to serve as background material for the remaining lectures of the Summer School.

Informations sur la vidéo

  • Date de captation 05/06/2023
  • Date de publication 09/12/2025
  • Institut Institut Fourier
  • Langue Anglais
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis